Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales
نویسندگان
چکیده
Climate change-induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed. It is also not clear whether the most frequently used phenological index, namely the average date of a phenological event across a population, adequately captures phenological shifts in the distribution of events across the season. We use the long-tailed tit Aegithalos caudatus (Fig. 1) as a case study to explore these issues. We use an intensive 17-year local study to model mean breeding date and test the capacity of this local model to predict phenology at larger spatial and temporal scales. We assess whether local models of breeding initiation, termination, and renesting reveal phenological shifts and responses to climate not detected by a standard phenological index, that is, population average lay date. These models take predation timing/intensity into account. The locally-derived model performs well at predicting phenology at the national scale over several decades, at both high and low temperatures. In the local model, a trend toward warmer Aprils is associated with a significant advance in termination dates, probably in response to phenological shifts in food supply. This results in a 33% reduction in breeding season length over 17 years - a substantial loss of reproductive opportunity that is not detected by the index of population average lay date. We show that standard phenological indices can fail to detect patterns indicative of negative climatic effects, potentially biasing assessments of species' vulnerability to climate change. More positively, we demonstrate the potential of detailed local studies for developing broader-scale predictive models of future phenological shifts.
منابع مشابه
Functional differences between summer and winter season rain assessed with MODIS-derived phenology in a semi-arid region
Questions: We asked several linked questions about phenology and precipitation relationships at local, landscape, and regional spatial scales within individual seasons, between seasons, and between year temporal scales. (1) How do winter and summer phenological patterns vary in response to total seasonal rainfall? (2) How are phenological rates affected by the previous season rainfall? (3) How ...
متن کاملStudy of spatial and temporal rain and drought patterns in the south of Iran using TRMM
Droughts are one of the most damaging climatic phenomena, and the most complex natural hazard which affects the economy, agriculture, public health and environment in large areas. The aim of this study is to compare drought indicators derived from tropical rainfall measuring mission (TRMM) data in the south of Iran. Also the TRMM rainfall was considered, so as to investigate changes in the rai...
متن کاملTemporal and spatial distribution of extreme precipitation indices over the lake Urmia Basin, Iran
متن کامل
Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملSpatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)
Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...
متن کامل